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ABSTRACT  

Quantitative forecasting of site-specific geothermal energy extraction requires computationally efficient simulations of heat transfer 

between geothermal fluids and ambient rock. Such simulations must rely on adequate representations of both heat transfer mechanisms 

and geological structures in which these mechanisms occur. In particular, heat transfer in fractured rocks is controlled by properties of the 

underlying fracture network, which can be modeled by various conceptual representations. This variety comes from the heterogeneity of 

fracture network properties and from challenges posed by in-situ characterization. We propose to use a mesh-free, particle-based numerical 

method to gain a better understanding of the impact of the fracture network properties on geothermal performance. We analyze how 

fracture-network topology and matrix-block size distribution control, respectively, the advective and conductive mechanisms of heat 

transfer in fractures and ambient matrix, as well as the heat flux exchanged between these structures. We explore two different conceptual 

representations of fracture networks over a range of fracture-generation parameters and hydraulic conditions.  

 

1. INTRODUCTION   

Models of heat transfer in fractured media require information about hydraulic and thermal properties of both a fluid-filled 

fracture network and the ambient rock matrix. Features germane to geothermal reservoirs include (i) a strong contrast between the fracture 

and matrix properties resulting in advective and conductive mechanisms in the fractures and matrix, respectively; (ii) topological 

properties of a fracture network that determine the spatial extent of a heat extraction area; and (iii) fracture-matrix heat flux exchanges 

that control the geothermal performances.  

 Fracture networks often have a hierarchical or fractal structure (Sahimi, 1993). There are many different ways to generate such 

networks for reservoir modeling. One example of a fractal network, commonly used to simulate solute transport in hierarchically fractured 

rocks, are Sierpinski lattices (Doughty and Karasaki, 2002; Roubinet et al., 2013). Another example is a Watanabe-Takahashi network 

(Watanabe and Takahashi, 1995), which often captures key attributes of geothermal reservoirs. Both have been successfully employed in 

reservoir models, where coupled fluid flow and solute/heat transport are induced by either ambient or forced hydraulic conditions. 

However, fractal networks with same geometrical parameters (e.g., fractal dimension) and similar physical and/or hydraulic properties 

can look very different from each other (Roy et al., 2007). This complicates both in-situ characterization of geothermal systems and 

identification of their “realistic” conceptual representations. 

The presence of fractures on a large range of spatial scales and the strong contrast in properties between fractures and matrix 

imply that fractured reservoirs exhibit multi-scale heterogeneity. They also suggest that standard numerical models of coupled fluid flow 

and heat transport processes in these domains have (prohibitively) large computational cost. To tackle this challenge, we have introduced 

a mesh-free particle method, which was used to demonstrate the anomalous (non-Fourierian) behavior of heat transfer in fractured rocks 

(Gisladottir et al., 2016). Here, we use this method to simulate heat extraction in various hierarchical fracture networks at a small 

computational cost. Our main objectives are to compare the geothermal performances for different types of fractal networks and to analyze 

the impact of network properties on the computation efficiency of our method. For this purpose, we consider Sierpinski lattices and 

Watanabe-Takahashi networks with identical fracture density and smallest fracture length. Our analysis of the Sierpinski and Watanabe 

networks reveals that (i) for hydraulic regimes characterized by slow flow velocities (i.e., ambient hydraulic conditions), the geothermal 

performances of the two network classes differ by close to an order of magnitude, and (ii) for hydraulic regimes characterized by fast flow 

velocities, the differences are much smaller and the geothermal performances are of the same order of magnitude. These different 

behaviors are mostly due to the differences in topological properties of the Sierpinski or Watanabe networks. Additionally, the CPU 

efficiency is not greatly affected by the topological properties (i.e. Sierpinski vs. Watanabe), however depending on the hydraulic regime 

fracture density may or may not increase the computational cost. For an example of hydraulic parameters used in geothermal studies the 

fracture density increase did not increase computational cost. 
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2. PROBLEM FORMULATION  

2.1 Fracture networks  

 Since the introduction of the notion of fractal geometry to geological structures (Mandlebrot, 1982 and Turcotte, 1992), the idea 

has gained support that fracture networks often have a hierarchical or fractal structure (Sahimi, 1993). Multiple fracture networks have 

been used for transport modeling. Sierpinski lattices are an example of synthetic fractal fracture patterns whose origin is the self-similar 

cataclasic model (Sammis et al., 1986). They have been used to simulate dynamic processes in hierarchically fractured rocks (Doughty 

and Karasaki, 2002; Roubinet et al., 2013). Watanabe and Takahashi (1995) have introduced an alternative fractal network, which captures 

geothermal reservoir characteristics observed in the field, using only a few parameters that can be obtained from borehole data. 

 In Sierpinski networks, a flow domain is subdivided into nine equal squares by two orthogonal sets of fractures. For a domain 

of size of L, each fracture spacing, both between the fractures and the distance from the domain border, is L/3. This is referred to as the 

template. Then 𝑁𝑠𝑞 squares are filled with the template. When the length of the template’s set of orthogonal fractures is L/3 (and the 

fracture spacing is L/32), this is known as level 2. The process is then repeated until a desired level is reached. An example of a level-3 

Sierpinski lattice with 𝑁𝑠𝑞 = 3 and orthogonal fracture set with smallest fracture length equal to L/33 is shown in Figure 1. 

 In Watanabe-Takahashi networks, the number of fractures, 𝑁𝑓, and the normalized length, 𝑟𝑖, of the 𝑖th fracture (𝑖 = 1 … 𝑁𝑓) 

are related by 

 𝑁𝑓 = 𝑖𝑛𝑡(𝐶/𝑟0
𝐷)   𝑟𝑖 = 𝐶/𝑖1/𝐷             (1) 

where 𝐷 is the fractal dimension, and the function 𝑖𝑛𝑡(𝑥) rounds 𝑥 up to the next integer. The fracture density 𝐶 and the smallest fracture 

length 𝑟0 can be estimated from a core sample. The fracture aperture 𝑏 is constant and the same for all fractures. A fracture network is 

generated by assigning each midpoint of a fracture pair a random variable. There is an equal probability that the angle between the pair of 

fractures takes on two prescribed values, 𝜃1 or 𝜃2.  

 To facilitate comparison of the Sierpinski and Watanabe networks, both are assigned the same fracture density and smallest 

fracture length. The former is defined as the cumulative length of fractures per area of the domain (Singhal and Gupta, 2010), 

 𝜌 = ∑ 𝑟𝑖𝑖 𝐿2⁄ .                 (2) 

For the Sierpinski lattices the length of the smallest fracture element is used, while for the Watanabe network the smallest fracture length 

is 𝑟0/L.  

2.2 Fluid flow and governing equations 

 We consider steady-state laminar flow of an incompressible fluid in fractures embedded into impervious surrounding rock 

matrix. Each fracture is formed by two parallel smooth plates, resulting in the parabolic (Poiseuille) velocity profile and the average flow 

velocity 𝑢 given by 
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where 𝜌𝑙 and 𝜇 are, respectively, density and dynamic viscosity of the fluid;  𝐽 is the hydraulic head gradient along the fracture; and 𝑔 is 

the gravitational acceleration constant. By applying equation (3) to each fracture segment and enforcing mass conservation at the fracture 

junctions, a linear system 𝑨 = 𝒉𝒃 is formed where 𝒉 is the vector of the (unknown) hydraulic heads at fracture junctions (Long, 1982; 

Dreuzy, 2001).  With a known global pressure gradient imposed on the boundaries of the domains, the linear system is solved providing 

the hydraulic heads necessary to compute the average flow velocity in each fracture of the network. 

 The particle-based method described in section 2.3, and presented in Gisladottir et al. (2016), models heat transfer in fractured 

media by using a solution for a single fracture embedded in an infinite matrix as a base for a probabilistic model. Heat transfer in a single 

fracture of aperture, b, and semi-infinite length is described by coupled boundary-value problems. One, consisting of an advection-

dispersion-equation (ADE), governs temperature in the fracture, 𝑇𝑓(𝑥, 𝑧, 𝑡). The other, involving a diffusion equation (DE),  represents 

temperature in the matrix, 𝑇𝑚(𝑥, 𝑧, 𝑡). The continuity of temperature and heat flux is enforced at the fracture-matrix interfaces, coupling 

these two boundary-value problems. Initially the temperature throughout the domain, both in the fracture and the matrix, is equal to 𝑇0. 

The same temperature is prescribed along all external boundaries. The temperature of the injected fluid is equal to 𝑇𝑖𝑛𝑗. 

2.3 A particle-based algorithm for heat transfer 

 To ascertain the impact of network model selection (e.g., Sierpinski vs. Watanabe networks) and to evaluate the impact of global 

network properties on heat transfer, we use the mesh-free particle method presented by Gisladottir et al. (2016). For the sake of 

completeness we reproduce it here. The method spans three scales: i) the fracture-matrix scale where heat transfers by advection in the 

fractures and conduction in the infinite matrix, ii) the matrix-block scale where heat conduction is limited by neighboring fracture, and 

iii) the fracture-network scale where heat flux conservation is enforced at each fracture intersection and depends on the corresponding 

flow rate distribution.  
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At the fracture-matrix scale, an approximate analytical solution of the boundary-value-problems formulated in Section 2.2 takes 

the form (Tang et al., 1981)   

 𝑇𝑓(𝑥, 𝑡) = 𝑇𝑖𝑛𝑗𝑒𝑟𝑓𝑐 (
𝜑𝑚√𝐷𝑇

𝑚𝑥

2𝑢𝑏√𝑡−𝑥/𝑢
).               (4) 

It relies on the following simplifications: (i) longitudinal dispersion in the fracture is assumed to be negligible in comparison with 

convection, (ii) the ADE equation is averaged over the fracture aperture, and (iii) heat transfer in the matrix is assumed to be one-

dimensional, perpendicular to the fracture. This analytical solution is inverted in order to evaluate the time tdiff spent by a “particle” in the 

matrix for a given displacement in the fracture. To do so, (4) is used as a probabilistic model, which replaces 𝑇𝑓 with a uniform random 

generator R defined on the interval [0,1], and the result is inverted to compute corresponding random realization of tdiff.  

 At the matrix-block scale, the effects of potential neighboring fractures are taken into account by considering the case of a 

fracture 𝑓𝑖 with one fracture on each side 𝑓1and 𝑓2 at distance 𝑙1and 𝑙2, respectively. For a particle leaving fracture 𝑓𝑖 and diffusing into 

the matrix, we define 𝑃𝑡
1, the probability of reaching fracture 𝑓1 without crossing fracture 𝑓2 and 𝑃𝑡

2, the probability of reaching fracture 

𝑓2 without crossing fracture 𝑓1 . These first-passage-time probabilities are given analytically in the Laplace space (Feller, 1954), and back-

transformed into the time domain using numerical inversion with, e.g., the Stehfest (1970) algorithm. Next, we generate 𝑃transfer , the 

probability for a particle to transfer to one of the neighboring fractures with an associated transfer time 𝑡transfer smaller than the maximum 

diffusion time 𝑡diff, as 

 𝑃transfer = 𝑃transfer
1 (𝑡transfer ≤ 𝑡diff) + 𝑃transfer

2 (𝑡transfer ≤ 𝑡diff).            (5) 

Once the value of 𝑃transfer is evaluated, we pick a random number U from a uniform distribution on the interval [0,1]. If U is larger than 

𝑃transfer , the particle does not transfer to the neighboring fractures, otherwise it does and the transfer time 𝑡transfer is found by solving 

𝑃transfer = 𝑈. The particle transfers to 𝑓1 if the condition U/𝑈max>𝑙1/( 𝑙1+𝑙2) holds with Umax=Ptransfer, otherwise it transfers to 𝑓2. 

At the fracture-network scale, if a particle reaches a fork intersection at the end of the fracture, the fracture to which it transfers 

is determined from heat flux conservation. The latter accounts for the intersection configuration and flow rate distribution as follows. The 

particles enter fractures with positive flow taking into account full mixing and streamline routing rules (Hull, 1986 and Berkowitz, 1994). 

Assuming that complete mixing takes place, the probability of a particle to enter into a fracture is the ratio of flow rate in the considered 

fracture to the sum of the flow rates leaving the considered intersection. If a particle can enter two fractures, the particle enters the fracture 

with dominant flow (LeGoc, 2009). 

3. SIMULATION SET UP 

  In order to investigate the importance of network model selection, we consider the Sierpinski and Watanabe fracture networks 

embedded into a square matrix domain with side lengths of 100 m. Figure 1 shows Sierpinski lattice networks S1, S2, and S3 with 𝑁𝑠𝑞=3 

and level M=3, 4, and 5, respectively. The fracture densities and smallest length elements of these networks are collated in Table 1.  

 

(a) S1 full 

 

(b) S2 full 

 

 

(c) S3 full 

Figure 1. Sierpinski networks with levels M = 3 (S1, left), = 4 (S2, center), and = 5 (S3, right). 

For each of the Sierpinski networks S1, S2, and S3, there exists a Watanabe network with a similar fracture density (within 2% 

difference) and the same smallest fracture length (Table 1). Those networks are labeled Watanabe network W1, W2, and W3, respectively. 

They are shown in Figure 2 with the fractures generated by equation (1) (top row) and the backbone of those fracture networks (bottom 

row). The Watanabe networks have the fractal dimension D whose values are found in the natural environment (Main, 1990; Scholz, 

1993) and is employed for geothermal characteristic networks (Watanabe and Takahashi, 1995). For both networks only the fractures 

belonging to their respective backbones are identified based on the velocity field.   
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(a) W1 full 

 

(b) W2 full 

 

(c) W3 full 

 

(d) W1 backbone 

 

(e) W2 backbone 

 

(f) W3 backbone 

Figure 2. Top row: three Watanabe networks generated by equation (1) for the parameters in Table 1. Bottom row:  backbones 

of these networks.  

 An injection well spans the left side of the computational domain, and the extraction well represents its right side. Fluid flow 

takes place from left to right through the interconnected network. To show the robustness of the prediction we look at two different 

hydraulic regimes between two boreholes set up for the geothermal exploitation. The first regime, called Fast flow, is defined with a head 

gradient of 1.25 and is employed in existing studies on geothermal systems (Suzuki et al., 2015). The second regime, called Slow flow, is 

defined with a head gradient set to 10-2 and is used for comparison. Bottom and top borders of the domain are considered to have no-flow 

boundaries. The flow velocity fields are generated as described in Section 2.2. with fluid density and dynamic viscosity, 𝜇 = 10−3 kg/(m 

s) and 𝜌𝑣 = 103 kg/m3, respectively. The physical properties are thermal conductivity, 𝑘 = 2.1 W/(m ∙ °C); rock density, 𝜌𝑓 =

2650 kg/m3; and rock heat capacity, 𝑐𝑝 = 1000 J/(kg ∙ °C). The Péclet number is defined as 𝑃𝑒 = (𝐿 ∗ 𝑢ave)/𝛼 where L=100 m is the 

length of the domain; 𝑢ave is the average flow velocity in the network (Table 2); and 𝛼 is the thermal diffusivity 𝛼 = 𝑘/(𝜌𝑓𝑐𝑝). 

Table 1. Global parameters for Sierpinski and Watanabe networks generation. 

 Fracture Density 

[-] 

Level 

M [-] 

Frac. Density 

parameter, C [-] 

Smallest fracture 

length [m] 

S1 0.109 3  3.7 

S2 0.147 4  1.23 

S3 0.185 5  0.41 

W1 0.109  45 3.7 

W2 0.149  22.3 1.23 

W3 0.184  13.87 0.41 
Reporting on geothermal reservoirs is often done in the form of 𝑃𝑓 = 1 − 𝑇 where the minimum efficiency of the system is represented 

as 𝑃𝑓 = 0 because the temperature of the extracted fluid is equal to the temperature of the (here cooler) injected fluid. Therefore the 

maximum efficiency of the system is represented as 𝑃𝑓 = 1 corresponding to cases where the temperature of the extracted fluid is equal 

to the (here warmer) initial temperature of the system. Figure 3 shows the temporal profiles 𝑃𝑓(𝑡) for all six networks for both hydraulic 
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regimes Fast flow and Slow flow. These simulations were done using 5 ∙ 103 particles and they are similar to simulations performed with 

104. 

4. RESULTS AND DISCUSSION 

 

Figure 3. The Performance of the system 𝐏𝒇 as a function of time [years] for heat transport between two boreholes 100 m apart 

across fracture networks: S1, S2, and S3 (Figure 1) as well as W1, W2, and W3 (Figure 2) for Slow flow (left) and Fast flow 

(right).  

In Figure 3 we look at the performance of the system over time at the extraction borehole on the right-hand side of the domain 

for all six interconnected networks S1, S2, S3, W1, W2, and W3 presented in Figure 1 and Figure 2. For Slow flow (left), the Watanabe 

networks have significantly faster drop in the performance, almost an order of magnitude, than the Sierpinski networks in which the 

particles appear to spend more time in the matrix. This is due to the fact that there are far more preferential pathways, fractures that span 

the entire domain left to right, in the Watanabe networks. When performing a simulation with the same hydraulic head on those two 

networks, such as here, results in higher average velocity in the Watanabe networks (due to higher number of preferential pathways) then 

the Sierpinski networks as is shown in Table 2. The increased velocity causes lower probability for the particles to enter the matrix. For 

both the Watanabe network and the Sierpinski network as the fracture density increases the arrival times decrease due to the limitations 

of the matrix block. Although there is eventually a difference between W1 and W2, the performance is quite similar past the 50% drop in 

the performance. 

Table 2. Network flow velocity values for Sierpinski and Watanabe networks for Slow and Fast flow. 

Velocity 

[m/s] 

Slow flow 

Ave 

Slow flow  

Min 

Slow flow 

Max 

Fast flow 

Ave 

Fast flow 

Min 

Fast flow 

Max 

S1 6.37 x 10-5 9.57 x 10-7 3.05 x 10-3 7.96 x 10-2 1.20 x 10-4 3.81 x 10-1 

S2 3.95 x 10-4 4.11 x 10-8 3.12 x 10-3 4.94 x 10-2 5.14 x 10-6 3.90 x 10-1 

S3 2.31 x 10-4 6.25 x 10-10 3.15 x 10-3 2.89 x 10-2 7.82 x 10-8 3.94 x 10-1 

W1 1.18 x 10-3 2.96 x 10-5 3.86 x 10-3 1.47 x 10-1 3.70 x 10-3 4.82 x 10-1 

W2 1.16 x 10-3 9.46 x 10-6 3.35 x 10-3 1.14 x 10-1 1.18 x 10-3 4.19 x 10-1 

W3 1.17 x 10-3 6.00 x 10-8 3.47 x 10-3 1.47 x 10-1 7.49 x 10-6 4.34 x 10-1 
 

The Fast flow (right) the velocity variation (Table 2) between the networks is not as high and hence the variance of the 

performance between Sierpinksi and Watanabe networks is not as stark for the Fast flow regime. Yet again the Watanabe networks have 

faster drop in the performance then the Sierpinski networks, although the difference is not as dramatic. For the Watanabe networks, 

initially there is not a large difference between the performances for the different fracture density networks, although the lowest fracture 

density network W1’s performance drops slightly faster to begin with. Eventually about approximately at the mean this trend reverses and 

the performance of W1 drops slower than for W2 and W3 where the highest fracture density network W3 has a faster drop in the 

performances. For Sierpinski lattices the low fracture density network S1 starts off with faster drop in performance but also reverses roles 

with the high-density fracture network S3 as time passes this happens slightly before reaching the mean. Over all the main features of the 

fracture network is of importance in the Fast flow and the matrix block only play a minor role and mostly somewhere after the mean of 

the performance drop. The Péclet numbers for networks S1-S3 and W1-W3 generated based on the average velocity presented in Table 2 

and defined in section 3 are on the [6.95 ∙ 103 1.88 ∙ 105] range for Slow flow regime and the [3.15 ∙ 106 2.35 ∙ 107]] range for Fast flow 

regime both of which are advection dominant. To begin with the all three Watanabe networks have a similar performance eventually past 

the 50% level of drop the W1 performance drops slower then the other two Watanabe networks. For the Sierpinski networks initially S1 
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performance drops of faster then S2 and S3, who have similar drop, but once past the 50% performance drop this reverses. Although the 

difference is not as much S1’s performance drops slower then the other two.  

To elucidate the anomalous (non Fourier like) nature of heat transfer in fracture rocks we define a relative temperature 𝑇inst as 

the instantaneous temperature change of the injected fluid. In Figure 4 we see the temperature distribution for the S1, S2, S3, W1, W2, 

and W3 for Fast flow and Slow flow regimes. These results are obtained by taking a PDF of the original CDF distribution of the arrival 

times. The heavy tail found in Figure 4 demonstrates that this anomalous behavior is found in for all of the Sierpinski and Watanabe 

networks in the Fast flow regime. Its presence is due to fracture properties as they influence fast heat propagation across the domain.  

 

Figure 4. Temporal variability of the relative temperature of fracture networks (left) S1, S2, S3, (see Figure 1) and (right) W1, 

W2, and W3 (see Figure 2) for Fast flow hydraulic regime. 

 

Figure 5. The CPU for the varying fracture density for the Watanabe and Sierpinski Networks for Fast flow and Slow flow. 

In Figure 5 we look at the computational cost of running the simulations of heat transport across our 100 m domain for the six 

networks S1, S2, S3, W1, W2, and W3 producing the results presented in Figure 5 as a function of their fracture density which is found in 

Table 1. For both the Sierpinski and the Watanabe networks there is significant higher CPU usage for Slow flow hydraulic regime for 

high fracture density networks. However in both case the increase is not significant for low fracture density networks.  Interestingly 

enough for the hydraulic regime representative of those used in geothermal field studies Fast flow (Suzuki et al. 2015) increasing the 

fracture density does not increase computational cost, this applies to both Sierpinski and Watanabe networks.  
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Figure 6. The temporal variation of the performance drop of the system over 100m to levels of 80% and 50% for varying degrees 

of fracture density for Fast flow hydraulic regime. 

From Figure 6 we conjure that the time it takes the performance drop of the system to level of 80% and 50% performance has 

more dependence on the type of fracture network then the density of the network itself. There is more significant difference on the 50% 

performance drop between Watanabe and Sierpinski network then for the 80%.  

5. CONCLUSION 

We use a computationally light mesh-free particle method to perform numerical simulations on discrete fracture networks 

representative of a fractured porous medium. The particle method is applied to two different networks, Sierpinski and Watanabe 

networks, with three sets of parameters for fracture density and smallest fracture length. For all six simulations, we have reported on 

performance of the system, in particular: pulse injection anomalous behavior; CPU expenditure; and levels at which we project 20% and 

50% performance drops. 

 

The results show that depending on hydraulic conditions, the propagation of a cold front across fractured domains is controlled 

by either the fracture network (Fast Flows) or matrix block (Slow Flows) properties. For fast flow both Sierpinski (S2 and S3) and 

Watanabe (W2 and W3) demon straight similar behaviors within in the network type although the density increases. However both of their 

lower density networks S1 and W1 very from their network type past the 50% performance drop, although S1 additionally varies from S2 

and S3 to begin with.  There is a stark contrast between the performance drop of all three Sierpinski and all three Watanabe networks. 

This in turn means that the performance drop of the system to levels of 80% and 50% are far more dependent on the type of network rather 

then fracture density for Fast flow hydraulic regime. The heat transfer significantly deviates from the Fourier law, over a wide range of 

fracture densities, giving rise to anomalous effective behavior characterized by long tails. Additionally the hydraulic regime has far more 

impact then the topological properties as for an example of a hydraulic regime used in geothermal field studies Fast flow the computational 

cost did not significantly increase with increased fracture density.  

Our results demonstrate that our algorithm takes a fraction of the time that it would take a mesh based numerical solutions of 

heat transfer equations. To further quantify the relative improvement we are engaged in further quantitative comparison of the particle 

method against a mesh method for a particular physical fracture example. Additionally, extending the studies to incorporate 

heterogeneity of matrix properties and for example randomly distributed fracture angles (Watanabe network) and/or heterogeneous 

fracture apertures (Watanabe and Sierpinski network). Our work is connected to uncertainty in site characterization (Ezzedine 2010) 

with Monte Carlo simulations. 

 

We presented computationally efficient quantitative forecasting of site-specific geothermal energy extraction simulations of 

heat transfer between two boreholes. The hydraulic regime is the key determinant in the computational efficiency of the method and its 

translation into a velocity field, determined by the conceptualization of the chosen network, is to critical on geothermal performance. 
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